If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+16m+15=0
a = 1; b = 16; c = +15;
Δ = b2-4ac
Δ = 162-4·1·15
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-14}{2*1}=\frac{-30}{2} =-15 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+14}{2*1}=\frac{-2}{2} =-1 $
| ?(x+4)=7x+28 | | 4m-5+3m+3=90 | | 3m+3=15.m= | | 9-15y=4 | | 2x+5x+110=360 | | (u-10)*10=20 | | 144/f=12 | | 4n-1=100 | | 5(2x–1)+2(x+5)=5 | | 5d/3=80/12 | | -13=4(x-5) | | 4(x-6)=(4x+24 | | -4^2+5x=0 | | 9^x-2=27^3x | | 5(x+7£=-15 | | 7r+6+8r-8=90 | | 9^{x-2}=27^{3x} | | 4a+18=9a-12 | | 11x+11x=167 | | Y(3y-5)=12-5y | | .x/5+5=-10 | | (x+11)+(11x)=167 | | x/5−3=−6 | | x+11+11x=167 | | 17x-35=7x-8 | | 11x +6=5 | | -16+3x=5 | | 19p=342 | | 6x^{2}+9=6 | | –3+–3c=–12 | | 3n+10=6n+4 | | –4w=–w+9 |